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Motivation

 Is N=4 SYM the only* integrable theory in 4D?


 What happens in 4D when reduce supersymmetry?
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Motivation

 N=2 SCFTs: the simplest next step.


 Orbifolds of N=4 SYM + marginal deformation: span a 

big subset of the landscape of Lagrangian N=2 SCFTs.


 Also generalisable to a large class of  N=1 SCFTs.
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The simplest example
Z2 quiver theory with 

SU(N)xSU(N) color group

 Z2  orbifold N=4 SYM marginally deformed from the orbifold point (  ) g1 = g2

X = ( 0 X12

X21 0 ), Y = ( 0 Y12

Y21 0 ), Z = (Z11 0
0 Z22)

The orbifold projection: 

 When  gives N=2 SCQCD in the Veneziano limit (  ).g2 → 0 Nf = 2Nc

bif bif Adj

Adj
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ℤ2



In this talk

 Bottom up: Long-range coordinate Bethe ansatz 

for three- and four-magnon eigenvectors 


 Top down: Novel Groupoid symmetry structures
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Long-range 

Coordinate Bethe 

Ansatz
[2507.08934 Bozkurt, Nieto García, Kong, EP]

[2408.03365 Bozkurt, Nieto García, EP]



The SU(2)XZ sector

E(p) = κ +
1
κ

− (κ +
1
κ )

2

− 2sin2p
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[2106.08449 EP, Rabe, Zoubos]κ =
g2

g1

 The SU(2) rotation on XZ is naively broken (by the orbifold) 


 Adjoint vacua: ZZZ:   and 


 Bifundamental vacua: XXX:  


 In this talk: only the adjoint ZZZ vacua 


 Excitations around XXX have very diff

⋯Z11Z11Z11⋯ ⋯Z22Z22Z22⋯

⋯X12X21X12⋯



|Ψ(p)⟩12 =
∞

∑
x=−∞

eipx |⋯Z11Z11X12(x)Z22Z22⋯⟩

One magnon

E(p) = ( κ −
1

κ )
2

+ 4 sin2 ( p
2 )

ℤ2 |Ψ(p)⟩ij = |Ψ(p)⟩ji , i, j = 1,2

One bifundamental X excitation interpolates between the two adjoint vacua:

Energy eigenvalue

Together parity and : reading the chain backwards ℤ2 𝒫  
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κ =
g2

g1

|Ψ(p)⟩21 =
∞

∑
x=−∞

eipx |⋯Z22Z22X21(x)Z11Z11⋯⟩

[1006.0015 Gadde, EP, Rastelli]



|Ψ(p1, p2)⟩11 = ∑
x1<x2

ψ11(p1, p2; x1, x2) |⋯Z11X12(x1)Z22⋯Z22X21(x2)Z11⋯⟩

Two magnons

E2(p1, p2) = E1(p1) + E1(p2)

ψii(p1, p2; x1, x2) = (eix1p1+ix2p2 + Sii(p1, p2)eix1p2+ix2p1) , i = 1,2

Sκ(p1, p2) = −
1 + eip1+ip2 − 2κeip2

1 + eip1+ip2 − 2κeip1

S11 = Sκ(p1, p2) =

Two bifundamental excitations

Energy eigenvalue

Scattering coefficients
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S22 = S1/κ(p1, p2) =
[1006.0015 Gadde, EP, Rastelli]

|Ψ(p1, p2)⟩22 = ∑
x1<x2

ψ22(p1, p2; x1, x2) |⋯Z22X21(x1)Z11⋯Z11X12(x2)Z22⋯⟩
 conjugateℤ2

With



Three magnons
 No solution with standard coordinate Bethe ansatz and


 Even when we add (a finite number of) contact terms to the CBA.


 Precisely because the naive YBE is not satisfied.

S1/κ(p2, p3) Sκ(p1, p3) S1/κ(p1, p2) ≠ Sκ(p1, p2) S1/κ(p1, p3) Sκ(p2, p3)

E3(p1, p2, p3) = ∑
n=1,2,3

E1(pn)

Q21 Q12 Q21 Q21 Q21Q12

=

3



Three & Four magnons
 The only way to get an eigenvector with 3 or more excitations:


 Is to allow for infinite position dependent corrections to the CBA:

Ψ3( ⃗p ; ⃗x ) = ∑
σ∈S3

(Aσ + Dn,m
σ ) ei ⃗p σ⋅ ⃗x

With the integers: ,  and  

labelling the distances between the 3 or 4 magnons respectively.

n = x2 − x1 − 1 m = x3 − x2 − 1 r = x4 − x3 − 1
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Ψ4( ⃗p ; ⃗x ) = ∑
σ∈S3

(Aσ + Dn,m,r
σ ) ei ⃗p σ⋅ ⃗x



A lattice of corrections

coming from the three-magnon eigenvalue problem with contact terms, we observe that

the contributions of the contact terms still e↵ectively vanish due to relations coming from

the non-interacting equations. We already observe this phenomenon for the two-magnon

problem, as discussed at the end of Section 3.2.

However, a non-trivial solution for the three-magnon contact term ansatz emerges

upon imposing momentum constraints. Under these constraints, certain conditions similar

to (3.20) that typically nullify the overall contribution of contact terms, are relaxed. This

yields a partial solution to the three-magnon problem for a certain kinematic limit. This

is not entirely satisfactory, as it only grants access to a limited portion of the spin chain

model’s spectrum. We present the details of this partial solution of the contact term ansatz

for three magnons in Appendix A.

Then, we considered introducing additional contact terms for a finite number of three-

magnon configurations in position space but encountered the same issue. These attempts

led us to conclude that finding a solution with a finite number of contact terms is not

possible. To address this, in the next section, we introduce position-dependent corrections

for every configuration in position space. Starting with the most general ansatz that

preserves shift symmetry, we construct eigenvectors for the spectral problem with arbitrary

momenta and  2 [0, 1]. Furthermore, leveraging the symmetries of the model allows us to

constrain the general form of the solution and investigate the spectrum of the spin chain

model.

4 Three-Body Long-Range Solution

Figure 2: The position-dependent corrections Dn,m
� are labeled by two integers, the dis-

tances between the three magnons, thus naturally live on a two-dimensional lattice. They

are also labeled by the permutations �.

Generalizing the CBA with contact terms, we introduce an ansatz with an infinite

number of correction terms,

| (p1, p2, p3)i12 =
X

l1<l2<l3

 (p1, p2, p3; l1, l2, l3) |l1, l2, l3i12 , (4.1)

– 16 –

Eigenvalue equations: 
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 non-interacting


 two-magnon interacting


 three-magnon interacting

For four magnons the  arrange on a cube.Dn,m,r
σ

For three magnons the  corrections to the CBA arrange on a 
lattice with nearest neighbor recursion relations:

Dn,m
σ



Special solution
 Only imposing the eigenvalue equations, does not completely fix all coefficients.


 Makes sense: as we have not yet imposted any BC.


 To further fix unknown coefficients: make sure that the  symmetry of the 

orbifold is manifest (at the level of eigenvectors) as well as, that


 For four magnons and short periodic spin chains (with untwisted or twisted BC) 
we get the same answer as direct diagonalisation (we have checked up to L=6). 

ℤ2

Aσ = ∏
i < σ(i)

Sκ(pi, pσ(i)) , Dn,m
σ = Sκ(pσ(1), pσ(2)) Dn,m

(σ(1)σ(2)) σ
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Impose:



coming from the three-magnon eigenvalue problem with contact terms, we observe that

the contributions of the contact terms still e↵ectively vanish due to relations coming from
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Generalizing the CBA with contact terms, we introduce an ansatz with an infinite

number of correction terms,

| (p1, p2, p3)i12 =
X

l1<l2<l3

 (p1, p2, p3; l1, l2, l3) |l1, l2, l3i12 , (4.1)

– 16 –

D0,1
σ = D1,0

σ = (κ −
1
κ ) ∏

i < σ(i)

Sκ(pi, pσ(i))

D1,1
σ = 0

D0,2
σ = (ε3 − ei𝒫 − 2κ) (κ −

1
κ ) ∏

i < σ(i)

Sκ(pi, pσ(i))

Dn≥1,m≥2
σ = (⋯)(κ −

1
κ ) ∏

i < σ(i)

Sκ(pi, pσ(i))

All the corrections are completely fixed and they take the form:

Dn,m
σ = (κ −

1
κ ) ∏

i < σ(i)

Sκ(pi, pσ(i)) ̂f(p1, p2, p3; n, m) = − ∮
dxdy
4π2

Gσ(x, y)
xn+1ym+1

Two magnon interacting eqn.

Non-interacting eqn.

Three magnon interacting eqn.

Special solution
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Infinite tower of Yang-Baxter
 The scattering coefficients of the special solution   factorise 

and obey the Yang-Baxter equation. 


 Remarkably, also the corrections  obey infinite tower of Yang-Baxter like 

equations  , for three-magnons (and also  four-magnons).

Aσ = ∏Sκ(pi, pσ(i))

Dn,m
σ

∀n, m ∀r

Yn,m
j (p2, p3, p1)Yn,m

j+1 (p1, p3, p2)Yn,m
j (p1, p2, p3) = Yn,m

j+1 (p1, p2, p3)Yn,m
j (p1, p3, p2)Yn,m

j+1 (p2, p3, p1)

Yn,m
j (p1, p2, p3) =

Sκ(p1, p2)
1 + f(p2, p1, p3; n, m)
1 + f(p1, p2, p3; n, m) 0

0 Sκ(p2, p1)
1 + f(p3, p1, p2; m, n)
1 + f(p3, p2, p1; m, n)

Yn,m
j (p1, p2, p3)Yn,m

j (p2, p1, p3) = 1

The Yang operator captures permutations between different coefficients:
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Smearing a magnon

 Putting together the pole structure: can write the four-magnon generating function 

as a function of the three-magnon one:

Relate an -magnon eigenvector to an -magnon eigenvector:(M + 1) M

lim
p̄4→0

lim
L→∞

1
L

L

∑
x4=x3+1

Ψ(4)
11 (p1, p2, p3, p4, x1, x2, x3, x4) = Ψ(3)

12 (p1, p2, p3, x1, x2, x3)

G(4)
σ (x, y, z) ∼

1
1 − eipσ(4)z

G(3)
σ (x, y) , z → 1At the level of the generating function:

G(4)
σ (x, y, z) ∼ finite , y → 1

G̃(4)
ijkl(x, y, z) = +

A(4)
ijkl

A(3)
ijk

r1 G̃(3)
ijk (x,0) + r2 G̃(3)

ijk (0,y) + r3 ∂yG̃(3)
ijk (x,0) + r4 ∂xG̃(3)

ijk (0,y) + xyz cijk(x)

Q4(x, y, z)(1 − eiplz) Ĝ(4)
ijkl(x, y, z) =

2xyz (κ − κ−1) (1 − eiplz − e−ipix)
(1 − eiplz)(1 − e−ipix)

+
rL Ĝ(3)

ijk (x,0) + ⋯

(1 − eiplz)
+

rR Ĥ(3)
jkl (y,0) + ⋯

(1 − e−ipix)
+ Ĉijkl(x, y, z)
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Why is this 

happening?



Novel  
Groupoid 

Symmetries
[2411.11612 Bertle, EP, Zhang, Zoubos]



N=4 SYM spin chain states: on the lattice sites a “single letter”:  

unique ultrashort singleton representation of 


All single letters are in the adjoint representation of the color group G.       

The total space is  .     

PSU(2,2 |4)

⊗L
ℓ 𝒱ℓ

N=2 SCFTs spin chain states: two distinct ultrashort reps of : 


In the adjoint and bifundamental reps of the color group 


The total space is not  .   

SU(2,2 |2)

G1 × G2 × …

⊗L
ℓ 𝒱ℓ

The Hilbert space

𝒱 = (X, Y, Z, X̄, Ȳ, Z̄, …) : adjG

𝒱 = (Z, Z̄, …) : adjG , ℋ = (X, Y, X̄, Ȳ, …) : bifG1×G2

20



The Hilbert space
The color index structure imposes restrictions on the total space!

X12 X21 allowed,  X12 X12 not allowed, Z11X12 allowed, Z22X12 not allowed!

Most elegantly described as a path groupoid (follow the arrows). 

In [2106.08449 Rabe,EP,Zoubos] we identified this structure with a dynamical spin chain: 
start with N=4 SYM states and specify the first color index:                 

  and  XXZXZZ → X12X21Z11X12Z22Z22 X21X12Z22X21Z11Z11

Matches the 1-category structure in [2010.01060 Felder,Ren Quantum Groups for RSOS]

1 2

Q12

Q21

Q21

Q12�1 �2

1 2

X12

Y21

X21

Y12Z11 Z22

4
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[2411.11612 Bertle,EP,Zhang,Zoubos]



R-symmetry 
algebroid



 N=4 SYM the SU(2) is unbroken:  its doublet rep.


 N=2 orbifold the SU(2) is broken:  or cannot be doublets 

as they are in different color reps.


 The broken generators can be recovered by moving beyond                  

the Lie algebraic setting to that of a Lie algebroid.

(Z
X) = 2

(Z11
X12) (Z22

X21)

The SU(2)XZ sector
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First for single letter words.


 N=4 SYM unbroken SU(2):  we have raising/lowering generators: 

 and 


 N=2 SCFT broken SU(2):  define two copies of raising/lowering:           

 and                                        

  and .


 The new generators  and  carry the info about the color reps                   

or equivalently the  symmetry.

σ+Z = X σ−X = Z

σ(1)
+ Z11 = X12 σ(1)

− X12 = Z11

σ(2)
+ Z22 = X21 σ(1)

− X21 = Z22

σ(1)
± σ(2)

±

ℤ2

The SU(2)XZ sector
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For single letter words                           

we are defining an algebroid acting as:


where  is  


  and          

as well as                                       

 and 

γ ∈ ℤ2 γ2 = 1

γ ▹ Z11 = Z22 γ ▹ X12 = X21

γ ▹ Z22 = Z11 γ ▹ X21 = X12

The SU(2)XZ sector

25

Z1 X12

Z2 X21

σ(1)
+

σ(1)
−

σ(2)
+

σ(2)
−

γ γ

σ(1)
3 σ(1)

3

σ(2)
3σ(2)

3

Figure 2: A graphical depiction of the Lie algebroid that replaces the su(2)XZ Lie algebra,

acting on single-site letters. The operator γ is the odd Z2 element that flips the quiver diagram

in Figure 1, exchanging the gauge groups 1 ↔ 2.

version of the R-symmetry groupoid. Hence, in the following we will use both terms depending

on the context.

The purpose of the R-symmetry groupoid is to enable a mapping between bifundamental

fields, such as X12 and X21, and the adjoint fields Z1 and Z2. At the level of individual fields

(single sites), the algebraic structure that replaces the broken su(2)XZ symmetry is illustrated

in Figure 2. At the level of the algebroid, the naively broken raising and lowering operators act

as

σ(1)
− (X12) = Z1 , σ(1)

+ (Z1) = X12 , (3.1)

where the “=” symbol should be understood as a mapping between the two fields, which have

different index structures. Here we have adopted the convention that the action of the broken

generator flips the second index of the field while preserving the first one. We also note that

the planar limit is essential for the bifundamental and adjoint fields to have the same matrix

dimension. A way to make sense of expressions like (3.1) is to consider that, through the

orbifold action, the broken R-symmetry generators have acquired a dependence on the gauge

group (specifically, on the labels of the N ×N blocks of the original SU(2N), as in (2.4)). This

non-direct product form of the R-symmetry and gauge group of the original N = 4 SYM theory

is what leads to the groupoid structure that we are describing.

The above structure, described for su(2)XZ ⊂ su(4), generalises straightforwardly to all

generators of SU(4), allowing us to capture the full SO(6) scalar sector. The algebraic structure

for the entire su(4) is depicted in Figure 3, where the vector spaces —adjoint and bifundamental

— are denoted as

V11 =
{

{

Z1, Z̄1
}

, {X12X21, Z1Z1, · · · } , {X12X21Z1, Z1Z1Z1, · · · } , · · ·
}

, (3.2)

V12 =
{

{

X12, X̄12, Y12, Ȳ12
}

, {X12Z2, Z1X12 · · · } , {X12X21X12, Z1X12Z2, · · · } , · · ·
}

,

with V22 and V21 being the Z2 conjugates (1 ↔ 2) of V11 and V12, respectively. It is important to

stress that the R-symmetry groupoid acts on the entire space of all possible spin chain lengths,

i.e. the entire quiver path groupoid. This is why in (3.2) a set of one-, two-, three- etc. site

– 8 –

XZ SU(2) subsector
 For single letter words we are defining 

an algebroid acting as:


 Where the operation  is  .


   and      
as well as                                       

 and 

γ ∈ ℤ2 γ2 = 1

γ ▹ Z11 = Z22 γ ▹ X12 = X21

γ ▹ Z22 = Z11 γ ▹ X21 = X12

Z11

Z22

1 2

Q12

Q21

Q21

Q12�1 �2

1 2

X12

Y21

X21

Y12Z11 Z22
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γ ∈ ℤ2



 For two letter words it becomes non-trivial:


 N=4 SYM unbroken SU(2): the action on two sites is given by 

the trivial coproduct   which acts as 

 


  N=2 SCFT broken SU(2): when using the naive coprdoduct

                           

Δσ± = 𝕀 ⊗ σ± + σ± ⊗ 𝕀

Δσ+ ▹ XX = XZ + ZX

Δσ± = 𝕀 ⊗ σ± + σ± ⊗ 𝕀

Δσ+ ▹ X12X21 = X12Z22 + Z11X21

Not allowed color contraction

The SU(2)XZ sector
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 For two letter words it becomes non-trivial:


 N=4 SYM unbroken SU(2): the action on two sites is given by 

the trivial coproduct   which acts as        

 


  N=2 SCFT broken SU(2): improve the coprdoduct 

 which now gives   

Δσ± = 𝕀 ⊗ σ± + σ± ⊗ 𝕀

Δσ+ ▹ XX = XZ + ZX

Δσ± = 𝕀 ⊗ σ± + σ± ⊗ γ

Δσ+ ▹ X12X21 = X12Z22 + Z11X12

Allowed color contraction

Z1 X12

Z2 X21
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+

σ(1)
−

σ(2)
+

σ(2)
−

γ γ

σ(1)
3 σ(1)

3

σ(2)
3σ(2)

3
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acting on single-site letters. The operator γ is the odd Z2 element that flips the quiver diagram

in Figure 1, exchanging the gauge groups 1 ↔ 2.
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in Figure 2. At the level of the algebroid, the naively broken raising and lowering operators act

as

σ(1)
− (X12) = Z1 , σ(1)

+ (Z1) = X12 , (3.1)

where the “=” symbol should be understood as a mapping between the two fields, which have

different index structures. Here we have adopted the convention that the action of the broken

generator flips the second index of the field while preserving the first one. We also note that

the planar limit is essential for the bifundamental and adjoint fields to have the same matrix
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XZ SU(2) subsector
 For single letter words we are defining 

an algebroid acting as:


 Where the operation  is  .


   and      
as well as                                       

 and 

γ ∈ ℤ2 γ2 = 1

γ ▹ Z11 = Z22 γ ▹ X12 = X21

γ ▹ Z22 = Z11 γ ▹ X21 = X12

Z11

Z22

The SU(2)XZ sector
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 This coproduct naturally generalises for words of any length


                          


With this rule, we have a  SU(2) algebroid obeying the usual SU(2) algebra: 

Δσ+ = ∑
all sites

⋯ 𝕀 ⊗ σ+ ⊗ γ ⋯

ℤ2

[σ(n)
+ , σ(m)

− ] = σ(n)
3 δnm [σ(n)

3 , σ(m)
± ] = ± σ(n)

± δnm

The SU(2)XZ sector
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Invariance of the 
Lagrangian



Invariance of the Lagrangian

 Single trace operator like the Lagrangian are traces in color space.


 To act with the coproduct we cut them open using cyclic 

prescription:   


 Explicit calculation the Lagrangian is invariant under the “broken 
SU(2)XZ” as well as the full SU(4). Here we show only SU(2) algebroid.

tr(ABC) →
1
3

(ABC + BCA + CAB)

30



The superpotential (at the orbifold point) 

after our opening up procedure 

After acting with any SU(2)XZ generator we get zero 

The Kähler part is trivially invariant as it is a singlet under the SU(2).

Δσ+ ▹ 𝒲1 ∝ (X12Y21 − Y12X21) X12 + X12 (X21Y12 − Y21X12) + (Y12X21X12 − X12X21Y12) = 0

1
g

|𝒲1⟩ = (X12Y21 − Y12X21) Z11 + Z11 (X12Y21 − Y12X21) + (Y12Z22X21 − X12Z22Y21)

Invariance of the Lagrangian

𝒲 = gtr1((X12Y21 − Y12X21)Z11) + gtr2((X21Y12 − Y21X12)Z22)
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Away from the orbifold point

 The coproduct gets deformed by the marginal deformation .


 This deformation is captured by a Drinfeld-like twist .


 Which we read of from the F-terms (and D-terms for the full SU(4)).

κ = g2/g1

ℱ(κ)

ℱ(κ) ▹ (X12Z22 − Z11X12) = X12Z22 −
1
κ

Z11X12

[2106.08449 Rabe,EP,Zoubos]

32



The F-terms define quantum planes    

in the transverse to the D3 branes directions. 

X12Z22 −
1
κ

Z11X12 = 0

The B-field (transverse to the D3) the open strings ending on the D3 branes 

see a non-commutative geometry. A quantum plane! [Seiberg,Witten1999]

X

Z

Away from the orbifold point

33
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The twist  


deforms the coproduct  

 


Where ,  and  .

ℱ(κ) ▹ (X12Z22 − Z11X12) = X12Z22 −
1
κ

Z11X12

Δκσ± = ℱ(κ)Δσ±ℱ−1(κ)

Δκσ+ = ∑ ⋯ 𝕀 ⊗ σ+ ⊗ γκs ⋯

s(Z11) = 1 = s(X12) s(Z22) = − 1 = s(X21) γs = − sγ

Away from the orbifold point
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Invariance of the Lagrangian

Δσ+ ▹ 𝒲1 ∝ (X12Y21 − Y12X21) X12 + X12 (X12Y21 − Y12X21) + κ
1
κ (Y12X21X12 − X12X21Y12) = 0

 The Kähler part is also invariant as before.

Away from the orbifold point the superpotential:



 Opening up




Acting with the marginally deformed coproduct 

𝒲 = g1tr1((X12Y21 − Y12X21)Z11) + g2tr2((X21Y12 − Y21X12)Z22)

1
g1

|𝒲1⟩ = (X12Y21 − Y12X21) Z11 + Z11 (X12Y21 − Y12X21) + κ (Y12Z22X21 − X12Z22Y21)

Δσ+ = ∑ ⋯ 𝕀 ⊗ σ+ ⊗ γκs ⋯
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Spectrum



The BPS operators also obtain by diagonalisation of the Hamiltonian (Feynman diagrams).

Reps of the SU(2) algebroid
This SU(2) was supposed 
to be broken. From the 
point of view of N=2 
representation theory, 
these operators are 
unrelated!

Relating Coulomb and Higgs branch operators in one algebroid multiplet.

Using the new coproduct  
          

they live in the same rep.
ℱsym(κ) = ℱanti(1/κ)
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2-sites for the full SU(4)
The  is BPS but the  and the  are not.20′￼ 15 1

|0,−1, 0⟩
2× |0, 0, 0⟩
|0,+1, 0⟩

|−1,−1, 0⟩
|−1, 0, 0⟩
|−1,+1, 0⟩

|+1,−1, 0⟩
|+1, 0, 0⟩
|+1,+1, 0⟩

|0, 0,+2⟩

|0, 0,−2⟩

∣

∣− 1
2 ,−

1
2 ,+1

〉

∣

∣− 1
2 ,+

1
2 ,+1

〉

∣

∣+ 1
2 ,−

1
2 ,+1

〉

∣

∣+ 1
2 ,+

1
2 ,+1

〉

∣

∣− 1
2 ,−

1
2 ,−1

〉

∣

∣− 1
2 ,+

1
2 ,−1

〉

∣

∣+ 1
2 ,−

1
2 ,−1

〉

∣

∣+ 1
2 ,+

1
2 ,−1

〉

SU(2)L

11/20−1/2−1

U(1)r

−2

−1

0

1

2

Figure 5: Depiction of the open 20′ multiplet, with the action of the broken R-symmetry

generators as dotted blue arrows and the unbroken SU(2)L as solid green arrows. The states

present at each node of this diagram are connected via the action of the unbroken SU(2)R.

take the deformed 15 to the orbifold point. We can confirm this by finding the corresponding

κ-deformed eigenstates of the two-site SO(6) Hamiltonian

|(1,1)0⟩ = κ
(−1)i

2
(

Z̄iZi − ZiZ̄i
)

|(1,3)0⟩ = κ
(−1)i

2 (XiYi+1 − YiXi−1)

|(3,1)0⟩ = κ
(−1)i

2
(

XiȲi+1 − ȲiXi+1
)

|(2,2)1⟩ = XiZ̄i+1 − κ(−1)i Z̄iXi

|(2,2)−1⟩ = XiZi+1 − κ(−1)iZiXi ,

(8.24)

where we only list the highest-weight state in each representation. Table 2 indicates the conver-

sion from the (SU(2)L,SU(2)R)U(1)r quantum numbers used here to the notation of [49].

primary of

(1,1)0 |0, 0, 0⟩ E0(0,0)

(1,3)0 |0,±1, 0⟩, |0, 0, 0⟩ B1

(3,1)0 | ± 1, 0, 0⟩, |0, 0, 0⟩ B̂1

(2,2)1 | ± 1
2 ,±

1
2 ,+1⟩ D

(± 1
2 )

1
2 (0,0)

(2,2)−1 | ± 1
2 ,±

1
2 ,−1⟩ D̄

(± 1
2 )

− 1
2 (0,0)

Table 2: Conversion table to the notation in [49] for representations of the unbroken R-

symmetry group (SU(2)L,SU(2)R)U(1)r for each multiplet in the 15.

These states do not all have the same energy, however one can check that indeed the two-site

coproduct obtained from the twists in Section 5 (of course without taking κ → 1/κ), correctly

relates all the states in the multiplet. The action of the SU(4) generators is depicted in Fig. 6.
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Figure 6: The open 15 multiplet, with the action of the broken R-symmetry generators shown

as dotted blue arrows and the unbroken SU(2)L as solid green arrows. The states present at each

node of this diagram are connected via the action of the unbroken SU(2)R.

8.2.3 The singlet two-site multiplet

The last multiplet we need to consider at two sites for the full SO(6) sector is the singlet 1,

which in our conventions has E = 3 at the orbifold point. For the naive open Hamiltonian

(8.18), this state mixes with the BPS state that is the superconformal primary of the |(1,1)0⟩
multiplet, and is κ-dependent. The modification of the open Hamiltonian in the singlet sector,

which gave us (8.21), resolves this mixing and gives the state

|1⟩ = X12X̄21 + X̄12X21 + Y12Ȳ21 + Ȳ12Y21 + Z1Z̄1 + Z̄1Z1 , (8.25)

with eigenvalue 3/κ, as well as its Z2 conjugate with eigenvalue 3κ. Although the eigenvalues

do become κ-dependent, the state itself is the same as at the orbifold point.

Untwisting this state using the two-site twists has no effect, and correspondingly the two-site

coproduct will annihilate this state for all the generators Ra
b. Of course, this is by construction,

as (ignoring the eV factors which do not carry SU(4) weight) this term is the opened kinetic

term in the Lagrangian and our twists were defined such that they leave this term invariant.

9 Conclusions

In this work we have taken a new perspective on the symmetries of four-dimensional quiver

SCFT’s with N = 2 supersymmetry. Firstly, at the orbifold point of the theory, we recovered

the naively broken R-symmetry generators by extending our notion of symmetry from a group to

a groupoid. We then used the F- and D-terms of the theory, as well as the unbroken symmetries,

to define twist operations which take us away from the orbifold point to obtain the marginally

deformed theories. Inverting those twists, we were able to show that the naively broken SU(4)

generators persist in the marginally deformed theories as well, although their action is no longer

coassociative, which considerably complicates their study. We concluded with several checks

of the new generators by using them to relate states in the physical spectrum of the one-loop

Hamiltonian.

Our construction is not free of ambiguities and educated guesses, and further work is needed

to fully justify all the steps that we followed. It is possible that alternative twists satisfying a
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The action of the “broken generators” is denoted by blue arrows.

6 × 6 = 20′￼+ 15 + 1

20′￼ 15

The unbroken SU(2)R by orange arrows.

The unbroken SU(2)L by green arrows.



Summary
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 Long-range coordinate Bethe ansatz for 3- & 4-magnons eigenvectors.


 Infinite tower of Yang-Baxter like equations.


 The 4-magnon solution can be written in terms of the 3-magnons one.


 Imposing periodic BC on 4-magnons = Hamiltonian diagonalization.


 Novel Groupoid symmetry structures: both the Lagrangian & the spectrum.



Future
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 Any number of magnons using smearing and poles as a guide.


 Combine with bifundamental vacuum to guess the R-matrix.


 What is the rapidity of the model?


 Better understand & learn how to use the Groupoid symmetries.


 Relation with RSOS already pointed out in .                                   . 

[2010.01060 Felder,Ren Quantum Groups for RSOS]

[2106.08449 Rabe,EP,Zoubos]

[2106.08449 Rabe,EP,Zoubos]



Thank you!

=
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