News from

4D N=2 SCFT spin chains

Elli Pomoni

IGST 2025

Juan Miguel Nieto García

Ziwen Kong

[2507.08934 Bozkurt, Nieto García, Kong, EP] [2408.03365 Bozkurt, Nieto García, EP]

Hanno Bertle

Xinyu Zhang

Costas Zoubos

[2411.11612 Bertle, EP, Zhang, Zoubos]

Motivation

***** Is $\mathcal{N}=4$ SYM the only* integrable theory in 4D?

*What happens in 4D when reduce supersymmetry?

Motivation

 $*\mathcal{N}=2$ SCFTs: the simplest next step.

***** Orbifolds of $\mathcal{N}=4$ SYM + marginal deformation: span a big subset of the landscape of Lagrangian $\mathcal{N}=2$ SCFTs.

***** Also generalisable to a large class of $\mathcal{N}_{=}$ SCFTs.

The simplest example

Z₂ quiver theory with SU(N)×SU(N) color group

 Z_2 orbifold $\mathcal{N}=4$ SYM marginally deformed from the orbifold point ($g_1=g_2$)

The orbifold projection:

$$X = \begin{pmatrix} 0 & X_{12} \\ X_{21} & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & Y_{12} \\ Y_{21} & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} Z_{11} & 0 \\ 0 & Z_{22} \end{pmatrix}$$
Adj

***** When $g_2 \to 0$ gives $\mathcal{N}_= 2$ SCQCD in the Veneziano limit ($N_f = 2N_c$).

In this talk

* Bottom up: Long-range coordinate Bethe ansatz for three- and four-magnon eigenvectors

* Top down: Novel Groupoid symmetry structures

Long-range

Coordinate Bethe

Ansatz

- The SU(2) rotation on XZ is naively broken (by the orbifold)
- \bigstar Adjoint vacua: ZZZ: \cdots $Z_{11}Z_{11}Z_{11}\cdots$ and \cdots $Z_{22}Z_{22}Z_{22}\cdots$
- * Bifundamental vacua: XXX: $\cdots X_{12}X_{21}X_{12}\cdots$
- ★ In this talk: only the adjoint ZZZ vacua
- * Excitations around XXX have very different behaviour

$$E(p) = \kappa + \frac{1}{\kappa} - \sqrt{\left(\kappa + \frac{1}{\kappa}\right)^2 - 2sin^2 p}$$

 $\kappa = \frac{g_2}{g_1}$ [2106.08449 EP, Rabe, Zoubos]

One magnon

One bifundamental X excitation interpolates between the two adjoint vacua:

$$|\Psi(p)\rangle_{21} = \sum_{x=-\infty}^{\infty} e^{ipx} | \cdots Z_{22} Z_{22} X_{21}(x) Z_{11} Z_{11} \cdots \rangle$$

$$|\Psi(p)\rangle_{12} = \sum_{x=-\infty}^{\infty} e^{ipx} | \cdots Z_{11} Z_{11} X_{12}(x) Z_{22} Z_{22} \cdots \rangle$$

$$|\Psi(p)\rangle_{12} = \sum_{x=-\infty}^{\infty} e^{ipx} | \cdots Z_{11} Z_{11} X_{12}(x) Z_{22} Z_{22} \cdots \rangle$$

Energy eigenvalue

$$E(p) = \left(\sqrt{\kappa} - \frac{1}{\sqrt{\kappa}}\right)^2 + 4\sin^2\left(\frac{p}{2}\right)$$

$$\kappa = \frac{g_2}{g_1}$$

[1006.0015 Gadde, EP, Rastelli]

Together parity and \mathbb{Z}_2 : reading the chain backwards $\mathscr{P}\mathbb{Z}_2 |\Psi(p)\rangle_{ij} = |\Psi(-p)\rangle_{ji}$

Two magnons

Two bifundamental excitations

$$\begin{split} |\Psi(p_1,p_2)\rangle_{11} &= \sum_{x_1 < x_2} \psi_{11}(p_1,p_2;x_1,x_2) \left| \begin{array}{c} \cdots Z_{11} X_{12}(x_1) Z_{22} \cdots Z_{22} X_{21}(x_2) Z_{11} \cdots \\ \\ |\Psi(p_1,p_2)\rangle_{22} &= \sum_{x_1 < x_2} \psi_{22}(p_1,p_2;x_1,x_2) \left| \begin{array}{c} \cdots Z_{22} X_{21}(x_1) Z_{11} \cdots Z_{11} X_{12}(x_2) Z_{22} \cdots \\ \\ \end{array} \right\rangle \end{split}$$
 \$\mathbb{Z}_2\$ conjugate

With
$$\psi_{ii}(p_1, p_2; x_1, x_2) = (e^{ix_1p_1 + ix_2p_2} + S_{ii}(p_1, p_2)e^{ix_1p_2 + ix_2p_1}), \quad i = 1, 2$$

Energy eigenvalue

$$E_2(p_1, p_2) = E_1(p_1) + E_1(p_2)$$

Scattering coefficients

$$S_{\kappa}(p_1, p_2) = -\frac{1 + e^{ip_1 + ip_2} - 2\kappa e^{ip_2}}{1 + e^{ip_1 + ip_2} - 2\kappa e^{ip_1}}$$

$$S_{11} = S_{\kappa}(p_1, p_2) =$$

$$S_{22} = S_{1/\kappa}(p_1, p_2) =$$

Three magnons

* No solution with standard coordinate Bethe ansatz and

$$E_3(p_1, p_2, p_3) = \sum_{n=1,2,3} E_1(p_n)$$

- * Even when we add (a finite number of) contact terms to the CBA.
- * Precisely because the naive YBE is not satisfied.

$$S_{1/\kappa}(p_2, p_3) S_{\kappa}(p_1, p_3) S_{1/\kappa}(p_1, p_2) \neq S_{\kappa}(p_1, p_2) S_{1/\kappa}(p_1, p_3) S_{\kappa}(p_2, p_3)$$

Three & Four magnons

The only way to get an eigenvector with 3 or more excitations:

Is to allow for **infinite** position dependent corrections to the CBA:

$$\Psi_{3}(\overrightarrow{p}; \overrightarrow{x}) = \left(\sum_{\sigma \in S_{3}} \left(A_{\sigma} + D_{\sigma}^{n,m}\right) e^{i\overrightarrow{p}_{\sigma} \cdot \overrightarrow{x}}\right)$$

$$\Psi_4(\overrightarrow{p}; \overrightarrow{x}) = \left(\sum_{\sigma \in S_3} \left(A_{\sigma} + D_{\sigma}^{n,m,r} \right) e^{i\overrightarrow{p}_{\sigma} \cdot \overrightarrow{x}} \right)$$

With the integers: $n = x_2 - x_1 - 1$, $m = x_3 - x_2 - 1$ and $r = x_4 - x_3 - 1$ labelling the distances between the 3 or 4 magnons respectively.

A lattice of corrections

For three magnons the $D_{\sigma}^{n,m}$ corrections to the CBA arrange on a lattice with nearest neighbor recursion relations:

Eigenvalue equations:

* non-interacting

* two-magnon interacting

* three-magnon interacting

n

For four magnons the $D_{\sigma}^{n,m,r}$ arrange on a cube.

Special solution

- *Only imposing the eigenvalue equations, does not completely fix all coefficients.
- * Makes sense: as we have not yet imposted any BC.
- ***** To further fix unknown coefficients: make sure that the \mathbb{Z}_2 symmetry of the orbifold is manifest (at the level of eigenvectors) as well as, that
- * For four magnons and short periodic spin chains (with untwisted or twisted BC) we get the same answer as direct diagonalisation (we have checked up to L=6).

$$A_{\sigma} = \prod_{i < \sigma(i)} S_{\kappa}(p_i, p_{\sigma(i)}), \quad D_{\sigma}^{n,m} = S_{\kappa}(p_{\sigma(1)}, p_{\sigma(2)}) D_{(\sigma(1)\sigma(2))\sigma}^{n,m}$$

Special solution

n

All the corrections are **completely fixed** and they take the form:

$$D_{\sigma}^{n,m} = \left(\kappa - \frac{1}{\kappa}\right) \prod_{i < \sigma(i)} S_{\kappa}(p_i, p_{\sigma(i)}) \, \hat{f}(p_1, p_2, p_3; n, m) = -\oint \frac{dxdy}{4\pi^2} \frac{G_{\sigma}(x, y)}{x^{n+1}y^{m+1}}$$

Infinite tower of Yang-Baxter

- ***** The scattering coefficients of the special solution $A_{\sigma} = \prod S_{\kappa}(p_i, p_{\sigma(i)})$ factorise and obey the Yang-Baxter equation.
- ***** Remarkably, also the corrections $D_{\sigma}^{n,m}$ obey infinite tower of Yang-Baxter like equations $\forall n, m$, for three-magnons (and also $\forall r$ four-magnons).

$$Y_{j}^{n,m}(p_{2},p_{3},p_{1})Y_{j+1}^{n,m}(p_{1},p_{3},p_{2})Y_{j}^{n,m}(p_{1},p_{2},p_{3}) = Y_{j+1}^{n,m}(p_{1},p_{2},p_{3})Y_{j}^{n,m}(p_{1},p_{3},p_{2})Y_{j+1}^{n,m}(p_{2},p_{3},p_{1})$$

The Yang operator captures permutations between different coefficients:

$$Y_{j}^{n,m}(p_{1},p_{2},p_{3}) = \begin{pmatrix} S_{\kappa}(p_{1},p_{2}) \frac{1+f(p_{2},p_{1},p_{3};n,m)}{1+f(p_{1},p_{2},p_{3};n,m)} & 0 \\ 0 & S_{\kappa}(p_{2},p_{1}) \frac{1+f(p_{3},p_{1},p_{2};m,n)}{1+f(p_{3},p_{2},p_{1};m,n)} \end{pmatrix} \qquad Y_{j}^{n,m}(p_{1},p_{2},p_{3})Y_{j}^{n,m}(p_{2},p_{1},p_{3}) = \mathbf{1}$$

Smearing a magnon

Relate an (M + 1)-magnon eigenvector to an M-magnon eigenvector:

$$\lim_{\bar{p}_4 \to 0} \lim_{L \to \infty} \frac{1}{L} \sum_{x_4 = x_3 + 1}^{L} \Psi_{11}^{(4)}(p_1, p_2, p_3, p_4, x_1, x_2, x_3, x_4) = \Psi_{12}^{(3)}(p_1, p_2, p_3, x_1, x_2, x_3)$$

At the level of the generating function:

$$G_{\sigma}^{(4)}(x, y, z) \sim \frac{1}{1 - e^{ip_{\sigma(4)}z}} G_{\sigma}^{(3)}(x, y) , \quad z \to 1$$

$$G_{\sigma}^{(4)}(x, y, z) \sim finite, \quad y \to 1$$

Putting together the **pole structure**: can write the four-magnon generating function as a function of the three-magnon one:

$$\hat{G}_{ijkl}^{(4)}(x,y,z) = \frac{2xyz\left(\kappa - \kappa^{-1}\right)\left(1 - e^{ip_{l}}z - e^{-ip_{i}}x\right)}{(1 - e^{ip_{l}}z)(1 - e^{-ip_{i}}x)} + \frac{r_{L}\hat{G}_{ijk}^{(3)}(x,0) + \cdots}{(1 - e^{ip_{l}}z)} + \frac{r_{R}\hat{H}_{jkl}^{(3)}(y,0) + \cdots}{(1 - e^{-ip_{i}}x)} + \hat{C}_{ijkl}(x,y,z)$$

Why is this

happening?

Novel

Groupoid Symmetries

The Hilbert space

N=4 SYM spin chain states: on the lattice sites a "single letter":

<u>unique</u> ultrashort **singleton representation** of $PSU(2,2 \mid 4)$

$$\mathcal{V} = (X, Y, Z, \bar{X}, \bar{Y}, \bar{Z}, \dots) : \mathbf{adj}_G$$

All single letters are in the adjoint representation of the color group G.

The total space is $\otimes_{\ell}^L \mathcal{V}_{\ell}$.

N=2 SCFTs spin chain states: <u>two distinct</u> ultrashort reps of SU(2,2|2):

$$\mathscr{V} = (Z, \bar{Z}, \ldots) : \mathbf{adj}_G, \quad \mathscr{H} = (X, Y, \bar{X}, \bar{Y}, \ldots) : \mathbf{bif}_{G_1 \times G_2}$$

In the **adjoint** and **bifundamental reps** of the color group $G_1 \times G_2 \times ...$

The total space is $\underline{not} \otimes_{\ell}^{L} \mathscr{U}_{\ell}$.

The Hilbert space

The color index structure imposes restrictions on the total space!

X₁₂ X₂₁ allowed, X₁₂ X₁₂ not allowed, Z₁₁X₁₂ allowed, Z₂₂X₁₂ not allowed!

In [2106.08449 Rabe, EP, Zoubos] we identified this structure with a **dynamical spin chain:** start with $\mathcal{N}=4$ SYM states and specify the first color index:

$$XXZXZZ \rightarrow X_{12}X_{21}Z_{11}X_{12}Z_{22}Z_{22}$$
 and $X_{21}X_{12}Z_{22}X_{21}Z_{11}Z_{11}$

Most elegantly described as a **path groupoid** (follow the arrows).

Matches the 1-category structure in [2010.01060 Felder, Ren Quantum Groups for RSOS]

R-symmetry algebroid

- * $\mathcal{N}=4$ SYM the SU(2) is **unbroken**: $\binom{Z}{X}=2$ its doublet rep.
- * $\mathcal{N}=2$ orbifold the SU(2) is **broken**: $\binom{Z_{11}}{X_{12}}$ or $\binom{Z_{22}}{X_{21}}$ cannot be doublets

as they are in different color reps.

* The broken generators can be recovered by moving beyond the Lie algebraic setting to that of a Lie algebroid.

First for *single letter* words.

* N=4 SYM unbroken SU(2): we have raising/lowering generators:

$$\sigma_{+}Z = X$$
 and $\sigma_{-}X = Z$

***** N=2 SCFT broken SU(2): define **two copies** of raising/lowering:

$$\sigma_{+}^{(1)}Z_{11} = X_{12}$$
 and $\sigma_{-}^{(1)}X_{12} = Z_{11}$

$$\sigma_{+}^{(2)}Z_{22} = X_{21}$$
 and $\sigma_{-}^{(1)}X_{21} = Z_{22}$.

The new generators $\sigma_{\pm}^{(1)}$ and $\sigma_{\pm}^{(2)}$ carry the info about the color reps or equivalently the \mathbb{Z}_2 symmetry.

For *single letter* words

we are defining an algebroid acting as:

where
$$\gamma \in \mathbb{Z}_2$$
 is $\gamma^2 = 1$

$$\gamma \triangleright Z_{11} = Z_{22}$$
 and $\gamma \triangleright X_{12} = X_{21}$

as well as

$$\gamma \triangleright Z_{22} = Z_{11} \text{ and } \gamma \triangleright X_{21} = X_{12}$$

For *two letter* words it becomes non-trivial:

- * N=4 SYM unbroken SU(2): the action on two sites is given by the trivial coproduct $\Delta \sigma_{\pm} = \mathbb{I} \otimes \sigma_{\pm} + \sigma_{\pm} \otimes \mathbb{I}$ which acts as $\Delta \sigma_{+} \triangleright XX = XZ + ZX$
- * N=2 SCFT broken SU(2): when using the naive coprdoduct

$$\Delta \sigma_{\pm} = \mathbb{I} \otimes \sigma_{\pm} + \sigma_{\pm} \otimes \mathbb{I}$$

$$\Delta \sigma_{+} \triangleright X_{12} X_{21} = X_{12} Z_{22} + Z_{11} X_{21}$$

Not allowed color contraction

- * For *two letter* words it becomes non-trivial:
- N=4 SYM unbroken SU(2): the action on two sites is given by

the trivial coproduct $\Delta \sigma_{\pm} = \mathbb{I} \otimes \sigma_{\pm} + \sigma_{\pm} \otimes \mathbb{I}$ which acts as

$$\Delta \sigma_+ \triangleright XX = XZ + ZX$$

* $\sqrt{-2}$ SCFT broken SU(2): improve the coprdoduct

$$\Delta \sigma_{\pm} = \mathbb{I} \otimes \sigma_{\pm} + \sigma_{\pm} \otimes \gamma$$
 which now gives

$$\Delta \sigma_{+} \triangleright X_{12} X_{21} = X_{12} Z_{22} + Z_{11} X_{12}$$

Allowed color contraction

This coproduct naturally generalises for words of any length

$$\Delta \sigma_{+} = \sum_{\text{all sites}} \cdots \mathbb{I} \otimes \sigma_{+} \otimes \gamma \cdots$$

With this rule, we have a \mathbb{Z}_2 SU(2) algebroid obeying the usual SU(2) algebra:

$$\left[\sigma_{+}^{(n)}, \sigma_{-}^{(m)}\right] = \sigma_{3}^{(n)} \delta^{nm} \qquad \left[\sigma_{3}^{(n)}, \sigma_{\pm}^{(m)}\right] = \pm \sigma_{\pm}^{(n)} \delta^{nm}$$

- * Single trace operator like the Lagrangian are traces in color space.
- * To act with the coproduct we cut them open using cyclic

prescription:
$$tr(ABC) \rightarrow \frac{1}{3}(ABC + BCA + CAB)$$

* Explicit calculation the Lagrangian is invariant under the "broken SU(2)_{XZ}" as well as the full SU(4). Here we show only SU(2) algebroid.

The superpotential (at the orbifold point)

$$\mathcal{W} = g \operatorname{tr}_1 \left((X_{12} Y_{21} - Y_{12} X_{21}) Z_{11} \right) + g \operatorname{tr}_2 \left((X_{21} Y_{12} - Y_{21} X_{12}) Z_{22} \right)$$

after our opening up procedure

$$\frac{1}{g}|\mathcal{W}_{1}\rangle = \left(X_{12}Y_{21} - Y_{12}X_{21}\right)Z_{11} + Z_{11}\left(X_{12}Y_{21} - Y_{12}X_{21}\right) + \left(Y_{12}Z_{22}X_{21} - X_{12}Z_{22}Y_{21}\right)$$

After acting with any $SU(2)_{XZ}$ generator we get zero

$$\Delta \sigma_{+} \triangleright \mathcal{W}_{1} \propto \left(X_{12} Y_{21} - Y_{12} X_{21} \right) X_{12} + X_{12} \left(X_{21} Y_{12} - Y_{21} X_{12} \right) + \left(Y_{12} X_{21} X_{12} - X_{12} X_{21} Y_{12} \right) = 0$$

The Kähler part is trivially invariant as it is a singlet under the SU(2).

Away from the orbifold point

***** The coproduct gets **deformed** by the **marginal deformation** $\kappa = g_2/g_1$.

***** This deformation is captured by a **Drinfeld-like twist** $\mathcal{F}(\kappa)$.

*Which we read of from the F-terms (and D-terms for the full SU(4)).

$$\mathcal{F}(\kappa) \rhd (X_{12}Z_{22} - Z_{11}X_{12}) = X_{12}Z_{22} - \frac{1}{\kappa}Z_{11}X_{12}$$

[2106.08449 Rabe, EP, Zoubos]

Away from the orbifold point

The F-terms define quantum planes $X_{12}Z_{22}-\frac{1}{\kappa}Z_{11}X_{12}=0$

in the transverse to the D3 branes directions.

[2106.08449 Rabe, EP, Zoubos]

The **B-field** (transverse to the D3) the open strings ending on the D3 branes see a non-commutative geometry. *A quantum plane*! [Seiberg, Witten 1999]

Away from the orbifold point

The twist
$$\mathcal{F}(\kappa) \triangleright (X_{12}Z_{22} - Z_{11}X_{12}) = X_{12}Z_{22} - \frac{1}{\kappa}Z_{11}X_{12}$$

deforms the coproduct $\Delta_{\kappa}\sigma_{\pm}=\mathcal{F}(\kappa)\Delta\sigma_{\pm}\mathcal{F}^{-1}(\kappa)$

$$\Delta_{\kappa}\sigma_{+}=\sum\cdots\mathbb{I}\otimes\sigma_{+}\otimes\gamma\kappa^{s}\cdots$$

Where
$$s(Z_{11}) = 1 = s(X_{12})$$
, $s(Z_{22}) = -1 = s(X_{21})$ and $\gamma s = -s\gamma$.

Away from the orbifold point the superpotential:

$$\mathcal{W} = g_1 \operatorname{tr}_1 \left((X_{12} Y_{21} - Y_{12} X_{21}) Z_{11} \right) + g_2 \operatorname{tr}_2 \left((X_{21} Y_{12} - Y_{21} X_{12}) Z_{22} \right)$$

Opening up

$$\frac{1}{g_1} | \mathcal{W}_1 \rangle = \left(X_{12} Y_{21} - Y_{12} X_{21} \right) Z_{11} + Z_{11} \left(X_{12} Y_{21} - Y_{12} X_{21} \right) + \kappa \left(Y_{12} Z_{22} X_{21} - X_{12} Z_{22} Y_{21} \right)$$

Acting with the marginally deformed coproduct $\Delta \sigma_+ = \sum \cdots \mathbb{I} \otimes \sigma_+ \otimes \gamma \kappa^s \cdots$

$$\Delta \sigma_{+} \triangleright \mathcal{W}_{1} \propto \left(X_{12} Y_{21} - Y_{12} X_{21} \right) X_{12} + X_{12} \left(X_{12} Y_{21} - Y_{12} X_{21} \right) + \kappa \frac{1}{\kappa} \left(Y_{12} X_{21} X_{12} - X_{12} X_{21} Y_{12} \right) = 0$$

The Kähler part is also invariant as before.

Spectrum

Reps of the SU(2) algebroid

This SU(2) was supposed to be broken. From the point of view of $\mathcal{N}=2$ representation theory, these operators are unrelated! $X_{12}Z_{2}$?

Using the new coproduct $\mathcal{F}_{sym}(\kappa) = \mathcal{F}_{anti}(1/\kappa)$ they live in the same rep.

erators are
$$\left(\begin{array}{c} \downarrow \\ |! \\ X_{12}Z_2X_{21}X_{12} + X_{12}X_{21}X_{12}Z_2 + \kappa \left(X_{12}X_{21}Z_1X_{12} + Z_1X_{12}X_{21}X_{12}\right) \\ \Delta_{\kappa}\sigma_{+} \\ \left(\begin{array}{c} \downarrow \\ \downarrow \\ \end{pmatrix} \\ \lambda_{\kappa}\sigma_{-} \\ \left(\begin{array}{c} \downarrow \\ \downarrow \\ \end{pmatrix} \\ \Delta_{\kappa}\sigma_{-} \\ \frac{1}{\kappa}X_{12}Z_2Z_2Z_2 + Z_1X_{12}Z_2Z_2 + \kappa Z_1Z_1X_{12}Z_2 + \kappa^2Z_1Z_1Z_1X_{12} \\ \begin{pmatrix} \downarrow \\ \end{pmatrix} \\ \kappa^2Z_1Z_1Z_1Z_1 \\ \end{pmatrix}$$

 $X_{12}X_{21}X_{12}X_{21}$

Relating Coulomb and Higgs branch operators in one algebroid multiplet.

The BPS operators also obtain by diagonalisation of the Hamiltonian (Feynman diagrams).

2-sites for the full SU(4)

$$6 \times 6 = 20' + 15 + 1$$

The 20' is BPS but the 15 and the 1 are not.

$$20' \xrightarrow{-1 - 1/2} \xrightarrow{0} \xrightarrow{1/2} 1$$

$$15 \xrightarrow{|0,0,+2\rangle}$$

$$1 \xrightarrow{|0,0,+2\rangle}$$

$$1 \xrightarrow{|-\frac{1}{2}, -\frac{1}{2}, +1\rangle} \xrightarrow{|+\frac{1}{2}, -\frac{1}{2}, +1\rangle} \xrightarrow{|+\frac{1}{2}, -\frac{1}{2}, +1\rangle}$$

$$1 \xrightarrow{|-\frac{1}{2}, -\frac{1}{2}, +1\rangle} \xrightarrow{|+\frac{1}{2}, -\frac{1}{2}, +1\rangle} \xrightarrow{|+\frac{1}{2}, -\frac{1}{2}, +1\rangle}$$

$$1 \xrightarrow{|-\frac{1}{2}, -\frac{1}{2}, +1\rangle} \xrightarrow{|+\frac{1}{2}, -\frac{1}{2}, +1\rangle} \xrightarrow{|+\frac{1}{2}, -\frac{1}{2}, +1\rangle} \xrightarrow{|-\frac{1}{2}, -\frac{1}{2}, -1\rangle} \xrightarrow{|-\frac{1}{2}, -1\rangle} \xrightarrow{|-$$

The action of the "broken generators" is denoted by blue arrows.

The unbroken $SU(2)_R$ by orange arrows.

The unbroken SU(2)_L by green arrows.

Summary

- * Long-range coordinate Bethe ansatz for 3- & 4-magnons eigenvectors.
- * Infinite tower of Yang-Baxter like equations.
- * The 4-magnon solution can be written in terms of the 3-magnons one.
- * Imposing periodic BC on 4-magnons = Hamiltonian diagonalization.
- * Novel Groupoid symmetry structures: both the Lagrangian & the spectrum.

Future

- * Any number of magnons using smearing and poles as a guide.
- * Combine with bifundamental vacuum to guess the R-matrix.
- * What is the rapidity of the model? [2106.08449 Rabe, EP, Zoubos]
- * Better understand & learn how to use the Groupoid symmetries.

[2010.01060 Felder, Ren Quantum Groups for RSOS]

* Relation with RSOS already pointed out in [2106.08449 Rabe, EP, Zoubos].

Thank you!

